Performance evaluation and comparison of PCA Based human face recognition methods for distorted images
نویسندگان
چکیده
In this work, we use the PCA based eigenface method to build a face recognition system that have recognition accuracy more than 97% for the ORL database and 100% for the CMU databases. However, the main goal of this research is to identify the characteristics of eigenface based face recognition while, (1) the number of eigenface features or signatures in the training and test data is varied; (2) the amount of noise in the training and test data is varied; (3) the level of blurriness in the training and test data is varied; (4) the image size in the training and test data is varied; (5) the variations in facial expression, pose and illumination are incorporated in the training and test data; and (6) different databases with different characteristic for example with aligned images and non-aligned images, bright and dark image are used. We have observed that, (1) in general the increase of the number of signatures on images increases the recognition rate, however, the recognition rate saturates after a certain amount of increase; (2) the increase in the number of samples used in the calculation of covariance matrix in the PCA increases the recognition accuracy for a given number of individuals to identify; (3) the increase in noise and blurriness have different affect on the recognition accuracy; (4) the reduction in image-size has very minimal effect on the recognition accuracy; (5) if less number of individuals are supposed to be recognized then the recognition accuracy increases; (6) alignment of the facial images increases recognition accuracy; and (7) expression and pose have minimal effect on the recognition rate while illumination has great impact on the recognition accuracy.
منابع مشابه
تشخیص چهره با استفاده از PCA و فیلتر گابور
Methods for face recognition which are based on face structure are among techniques without supervision and produce unfavorable results in the presence of linear changes in images. PCA is a linear transform and a powerful tool for data analysis but does not produce good results for face recognition when there are non-linear changes resulting from changes in position, intensity and gesture in th...
متن کاملFace Recognition in Thermal Images based on Sparse Classifier
Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...
متن کاملImplementation of Face Recognition Algorithm on Fields Programmable Gate Array Card
The evolution of today's application technologies requires a certain level of robustness, reliability and ease of integration. We choose the Fields Programmable Gate Array (FPGA) hardware description language to implement the facial recognition algorithm based on "Eigen faces" using Principal Component Analysis. In this paper, we first present an overview of the PCA used for facial recognition,...
متن کاملSupervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملFace Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Machine Learning & Cybernetics
دوره 2 شماره
صفحات -
تاریخ انتشار 2011